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Adverse health outcomes, including heart failures, falls etc., are not random occurrences, but a consequence of long-term health deterioration or unhealthy
lifestyle. Detecting early evidence of such can help intervene proactively, reduce risks and increase healthy life expectancy.

Our research project, in collaboration with the Advanced Care Research Centre [1] at the University of Edinburgh, aims to exploit smart home and
wearable sensor data to detect patterns of health deterioration or deviation from a healthy routine. In order to provide key insights for preventative

Detecting deterioration and deviations from

a healthy routine.

Interpreting the deviations and investigating
the relationship between sleep and other ac-

t1vities.

Background
We analysed ADL data form the CASAS data

set by Cook et al |2].

This includes continuous

data from unobtrusive ambient sensors in smart
homes labelled with corresponding activities, in-
cluding sleeping, cooking, eating, napping, going
to the toilet, working, etc. for a sample of 11
participants over 2 months.

interventions and effective care, we extract causal interpretations of deviations by analysing the relationships between activities.

Methodology

Firstly, using process mining, we build workflow models that can detect deviating sequences of
activities, such as forgetting medication after a meal. Secondly, machine learning (ML) models allow
us to develop rich temporal profiles of daily routines, including sleep duration, number of meals, and
levels of active movement, and detect deviations on individual days or in the long term.

Door Sensors

Motion Sensors

concept:name

Light Sensors

Sensor layout

starttime

sensor

‘ Activity Recognition

endtime

Motion Sensors

Light Switch

Motion Sensors

https://www.sensirion.com/en/markets/sensor-

solutions-for-smart-home-applications/ Nov 2021

duration

daycase

time:timestamp

interval

Sleep
Toilet
Sleep
Cook

Relax

Cook_Breakfast

Bathe

Dress

Personal_Hygiene

Leave_Home
Enter_Home
Cook
Cook_Lunch

2011-06-16 00:00:00
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deviation_column actual_wvalue pred_value
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Deviation Number
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Feature importance plot for sleep duration using Random Forest
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Conclusions and Future Work

Preliminary results indicate “personal hygiene” activities and the morning wake up time as the strongest predictors of regular sleep duration, whereas
naps and nightly toilet visits seem to have a weaker correlation.

We believe our research can provide personalised, long-term health monitoring related to ADLs, producing key insights for preventative interventions
and effective care provision. Such a solution can help improve independent living, particularly for people in advanced age in a care-at-home or care home
environment. It can also reduce the burden in primary and social care through early prevention and reduced admissions.

Dealing with such noisy data and unpredictable routines continues to be a challenge, and results need to be contextualised to the needs and lifestyles of
the individual participants. Further data collection and analysis beyond the limited dataset we have explored so far is likely to improve the quality of
our algorithms and lead to new types of insights particularly for long-term predictions.
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